Construction Grammar(s) before and after the quantitative turn: what counts as a construction?

Guillaume Desaguiler

Université Paris 8 & Université Paris Ouest Nanterre La Défense, UMR 7114 MoDyCo

All Construction Grammar approaches offer a non-derivational representation of grammatical knowledge and posit that grammar consists of a large inventory of constructions, varying in size and complexity, and ranging from morphemes to fully abstract phrasal patterns. Yet, not all approaches agree as to how grammatical information is stored in the construction taxonomy, among other criteria.

In Berkeley Construction Grammar (Kay, 2013), only general and productive schemas such as let alone (Fillmore, Kay, & O’Connor, 1988), what’s X doing Y (Kay & Fillmore, 1999), or all-clefts (Kay, 2013) qualify as constructions. Patterns such as A as NP (stiff as a board, cool as a cucumber, flat as a pancake) do not contain what is necessary and sufficient to interpret and generate other linguistic expressions. They are therefore at the periphery of grammar (Kay, 2013). By comparison, Cognitive Construction Grammar (Goldberg, 1995, 2006, 2009) is redundant: any pattern that is sufficiently entrenched and whose overall meaning is not the sum of the meaning of its parts counts as a construction.

Most Construction Grammar approaches were built introspectively before a small yet growing community of cognitive linguists began to realize that the implications of their own theoretical framework were essentially empirical (Geeraerts, Kristiansen, & Peirsman, 2010; Gibbs, 2007; Glynn, 2010; Gries, Hampe, & Schönefeld, 2005). Since the constructional status of patterns of usage differs depending on the theoretical perspective that one adopts, my aim is to test the boundary between what counts as a construction and what does not, using a comprehensive array of methods meant to capture context and knowledge in Construction Grammar.

Focusing on A as NP and productivity measures (Baayen & Lieber, 1991; Baayen, 1992; Baayen & Renouf, 1996; Zeldes, 2012), I will show that (a) there is more to the productivity of a multiple-slot construction than high-schematic-level type frequency, (b) the borderline between ‘constructions’ and ‘patterns of coining’ cannot be set introspectively, and (c) multiple-slot schemas, as statistically significant sequences of constituents, are amenable to principles of associative learning, especially the fact that some constituents are cues for the outcome of others.

References


